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SUI',iARY "

An investigation of the power of the Euler equations in the prediction of

conical separated flows is presented. These equations are solved numerically

for the highly vortical supersonic flow about circular and elliptic cones.

Two sources of vorticity are studied; the first is the flow field shock system

and the second is the vorticity shed into the flow field from a separating

boundary layer. Both sources of vorticity are found to produce separation and

vortices. In the case of shed vorticity, the surface point from which the

vorticity is shed (i.e., separation point) is determined empirically.
Solutions obtained with both sources of vorticity are studied in detail,

compared with each other, and with potential calculations and experimental -

dati.
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INTRODUCTION

Separation and the formation of vortices in the three-dimensional flow

about wings and forebodies at high angles of attack is an important aspect of

advanced vehicle design. The phenomenon will be especially important at

maneuver conditions for the next generation fighter aircraft since the flight

envelopes of these vehicles may extend to high angles of attack at supersonic

speeds. An under-standing of three-dimensional separation and accompanying

vortex formation may help in adding to the aerodynamic efficiency of these

aircraft. Design efforts which try to take advantage of vortex lift or O-

utilize vortex flaps will surely benefit from basic studies of separated -tip

flows. Controllability problems associated with vortex interactions and

dsymmetric forebody separation will benefit from an understanding of flow

separation. If separated flows can be studied accurately and efficiently

using computational techniques, the development costs of these aircraft will

be significantly reduced.

This paper presents a numerical study of separation and accompanying

vortices in the flow about delta wings and circular forebodies at supersonic

speeds. The governing equations considered in this investigation are inviscid

(i.e., Euler's equation). It is well known that separation zones (i.e., 0

spirals or closed separation bubbles in 2-D flow) are associated with the

existence of vorticity in the flow1 , 2 , 3 , 4 . There are two sources of vorticity

in the high Reynolds number flows about supersonic aircraft: first, the

vorticity in the boundary layer and second, the vorticity produced by shock

waves. When boundary layer separation occurs, the vorticity of the boundary

layer is shed into the flow field and may, to a good approximation, he

considered as confined to an infinitesimal sheet which rolls into a vortex.

This approximation has been used in conjunction with linearized flow field

models for many years (see, for example, Ref. 5 and 6) with good results. The

present author 7 showed preliminary Euler calculations which indicated that the

more exact flow field model made the computation of vortex flows simpler and

at the same time more accurate. At flight Reynolds numbers (> 106), viscous

effects are confined to thin flow regimes (boundary layers and vortex sheets)

with the majority of the flow inviscid in nature. This fact makes the

solution of the Navier-Stokes equations with a unified procedure (no special

-.-. -- ". -. ---- -.- v - -- -.-.- - ....-...-. - ... .. .. - :..... - .. . - .: . . .:



treatment of sheets or boundary layers) very difficult. The Euler equations
combined with special treatments for sheets and boundary layer my turn out to

be a more reliable and accurate approach to the prediction of these flows.

The power of the Euler equation model lies in its ability to transport

vorticity while avoiding the evaluation of viscous terms. The extent of the .4,

capability of the Euler equations to predict separated flows is a major goal

of this work. -

In the past few years a number of investigators have studied numerical

solutions to the Euler equations exhibiting separation. In Ref. 8, Salas V.

showed how shock vorticity can cause separation at the base of a cylinder.

Rizzi et a19 and Murman 1 o have shown solutions to Euler's equations with

leading edge separation. In Ref. 9 and 10, the source of vorticity is

unclear; there is no evidence of strong shock waves. Both authors indicate

the possibility that separation is caused by numerical viscosity. In Ref. 10, .'

the wing is a flat plate delta; therefore, there must be a singularity at the

leading edge. The numerical scheme used could implicitly introduce a Kutta

condition at the leading edge and shed vorticity into the flow field. R. -

Newsomell showed Euler solutions over an elliptic delta wing with finite

thickness. His crude grid results exhibited leading edge separation (before

any crossflow shock); his very fine grid results exhibited separation after a

crossflow shock. The numerical schemes of Ref. 9, 10, and 11 require the .:

addition of artificial viscosity for stability. Their research has indicated

a small sensitivity of separation zones to reductions in artificial

viscosity. It could be that these separation zones are Reynolds number

independent (even numerical Reynolds number independent) and only zero

artificial viscosity will keep the flow attached. It is interesting to note

that the separated flows of Ref. 9, 10, and 11 compare well (at least

qualitatively) with experimental data even though the source of vorticity is

numerical (artificial viscosity or truncation error) in nature.

In the Euler calculations presented here, separation occurs only when a

well defined source of vorticity is present. In addition to vorticity shed

from the boundary layer, shock waves in supersonic conical flow can produce

enough vorticity to induce separation. This type of separation is -.

qualitatively similar to that produced by vorticity shed from a boundary

layer. With boundary layer vorticity excluded, any comparison with

'2
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experimental data will be poor. It is difficult to assess the relative

magnitude of the vorticity introduced into the flow from shocks and the

boundary layer. It should be pointed out that experimental data show large

regions of separated flow with no significant shock vorticity. This seems to

indicate that vorticity shed from the boundary layer is much larger than that

produced by shocks. In addition, boundary layer separation has a tendency to

reduce shock strengths and therefore shock vorticity. Nevertheless, shock

vorticity may still play an important role in the separation process.

Additionally, the investigation of shock vorticity induced separation can shed

__ some light on separated flow in general. The author investigated the effects

of shock vorticity on circular cones 7 , 12 and on elliptic delta wings 13 and

found that at high angle of attack a crossflow shock (Fig. 1) can produce

enough vorticity to cause separation. This phenomenon will be discussed in

i., detail later in this paper.

All geometries considered in this work are either delta wings which are

elliptic in cross section or circular cones. In addition, each section normal

to the z axis (Fig. 1) is self similar so that the geometry is conical. The

flow is assumed supersonic everywhere and separation lines are assumed to be

on conical rays. With these assumptions and that of a conical body, it 4

follows that the flow is conical (i.e., all flow variables are independent of

the spherical radius r (Fig. 1)). However, the basic features of the flow,

including separation and vortices, are three-dimensional in nature.

In this paper our previous work in highly vortical flows 7' 12' 1 3 will be

reviewed after which our more recent findings will be presented.* The overall

computational procedure will be outlined and the model for shedding vorticity

S-- from specified separation points will be discussed. Flow fields with shock

vorticity induced separation will be studied, in addition to flows with

vorticity shed from both primary and secondary boundary layer separation

points. A detailed comparison of these two different sources of vorticity-2<

will he presented. The investigation of the computed flow fields will be

aided by comparisons with experimental data and computations of other S

researchers, including potential flow results. Finally, the findings of this

work to date will be summarized.

3
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2. COMPUTATIONAL PROCEDURE

The overall numerical procedure used in this study, although 
employing a v

number of new features, is essentially standard. 14 The fully three-

dimensional Euler's equations are solved with an explicit marching

technique. The marching direction, z (Fig. 1), is an iterative coordinate for

ythe conical flow considered here. The scheme is restricted by the fact that

the axial component of velocity, W, (Fig. 1), must be supersonic everywhere.

The marching scheme is continued until the flow field is invariant with

respect to the computational marching direction except for a scale factor.

The finite difference scheme used is Moretti's characteristic based X-

scheme. 15 The bow shock and the primary crossflow shock are fit and are

forced to satisfy the exact Rankine-Hugoniot jump conditions. The bow shock

is fit as the outermost boundary of the flow field. On the low pressure side

of the bow shock, freestream conditions exist. The crossflow shock is fit as

an internal boundary of the flow field with its low pressure side being

computed as the computation proceeds.
16

The crossflow shock computation is a critical part of the overall 4
procedure, particularly since it plays such a critical role in separation. As

mentioned in the Introduction, it is the vorticity produced by the crossflow .' .

shock which is significant. Any scheme that captures the crossflow shock and

introduces additional artificial viscosity to stabilize it runs the risk of

distorting the separation and vortex. The bow shock also introduces vorticity

into the flow field but not enough to produce separation. The crossflow shock

is caused by the fact that at a large incidence the crossflow component of the

velocity, ' u2+v-  (Fig. 1), becomes supercritical. The flow expands in going

around the body, and the crossflow can become supercritical if the incidence %

is high enough. This component of velocity must be small in the lee symmetry

plane due to the boundary conditions. A supercritical crossflow generally %

'-" passes through a relatively normal shock before stagnating in the lee plane on

the surface. The crossflow shock exists to turn the three-dimensional flow

parallel to the lee symmetry plane. The variation in strength of the

crossflow shock can be quite large. The shock is strongest at the body where

the crossflow is highly supersonic and approaches zero strength in the field

where the crossflow t- comes sonic. It is this variation in strength that

5
A. %
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produces a crossflow entropy gradient and thus radial vorticity. This

vorticity in turn causes shock induced separation.

The low pressure side of the crossflow shock is computed with one-sided

differences away from the shock. This is consistent with the fact that the

crossflow is supersonic. The Rankine-Hugoniot conditions, together with the

compatibility condition along a bicharacteristic reaching the shock on its

high pressure side, supply enough information to compute the deviation of each

shock point from a conical ray in addition to all the primitive variables on

its high pressure side. The bicharacteristic used is the one in the plane

containing the local normal to the shock and the marching direction. All

shock points are computed with the post correction scheme proposed by Rudman 17

and independently by deNeef1 8. The shocks converge (i.e., each shock point .6

becomes aligned with a conical ray) with the rest of the flow field. In all

the computations presented here, the last crossflow shock point fit had a S,:

normal Mach number of approximately 1.05 (pressure ratio of 1.12). The finite

difference scheme was able to capture weaker shock points. In addition, the

finite difference scheme was used to capture all reverse crossflow shocks and
oblique crossflow shocks in the flow field (to be discussed later). These

shocks are usually weak and the scheme can capture them accurately.

The computational grid used in this work is developed in stages. In the

first stage, the elliptic cross section in a constant z plane is mapped to a

circle. This step is omitted in the case of a circular cone. The mapping is

a simple Joukowski transformation and will not be detailed here. Next, a

polar coordinate system is used in the mapped space. An exponential

stretching is used in the radial direction to cluster grid points near the

surface in order to resolve the complex flow near separation. The Joukowski

mapping, clusters grid points in the circumferential direction automatically.

When thin ellipses (axis ratios > 10) were first considered, solutions with

large truncation error at the wing leading edge were found. One result of

this truncation error was the production of vorticity at the leading edge.
A

There was little error in entropy at the leading edge (i.e., entropy was

"" constant on streamlines), but the vorticity was large, leading to a violation
- of Crocco's theorem. The error was manifested hy a layer in crossflow

velocity at the surface. The crossflow on the hody was much lower than that

one point away from the body. While this vorticity was never large enough to

6 6
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. cause leading edge separation, as in the work of Ref. 9, 10, and 11, it did

distort the separation behind the crossflow shock. This error was eliminated

by increasing the resolution at the wing leading edge. An exponential

stretching was used in the circumferential direction.

Shock induced inviscid separation produces a contact surface emanating

from the separation point (Fig. 1). It is this contact that ultimately

spirals to form a vortex. The contact surface has a jump in entropy and an

accompanying jump in velocity. In conical flow, entropy is constant on

crossflow streamlines. Thus, one can see (Fig. 1) that the entropy on the

rwindward side of the contact comes from the windward stagnation point of a

cone and the wing leading edge stagnation point in the case of an ellipse.

The streamline that wets the body passes through the base of the crossflow

shock to form the high entropy side of the contact. There are a number of

possibilities for the entropy on the lee side of the contact. The crossflow

streamlines that wet the body are tracked in each step of the iteration, and

the proper entropy is imposed on the surface including the jump in entropy at

the separation point. The entropy discontinuity off the body is captured with

the finite difference scheme. The computation of the vortex sheet in the shed

vorticity computation will be discussed in another section of this paper.

The finite difference scheme used in this work is an explicit marching

scheme which is notoriously inefficient for converging to a conical or steady

solution. One advantage of the explicit marching scheme is that it is totally

'vectorizable." The time consuming parts of the code (i.e., interior point

computation) utilized the vector architecture of the Cray I computer. This

made the computation about 20 times faster than on an IBM 3033. The

computations shown here typically took 45 CPU minutes on the Cray 1, and the

grid used had 81 x 81 points in the cross sectional plane. In each case

shown, the maximum residual (i.e., the derivative of pressure in the marching

direction) was reduced at least six orders of magnitude.

77
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3. COMPUTATIONAL RESULTS - SHOCK INDUCED VORTICITY a

In this section, computational results showing spiralling streamlines due

to the vorticity produced by a crossflow shock will be analyzed. The first

configuration considered is a 100 half angle cone at M. = 2 and a 
= 250. The

surface pressure distribution is shown in Fig. 2. This flow field has a shock
I induced separation at 0 = 149.60. In Fig. 2, the computed surface pressures

using two grids are shown. Both computations 73 x 73 and 89 x 89 give the

same separation point and spiral location, indicating an independence of the

results to numerical viscosity due to truncation error. As a matter of fact,

this flow field was computed with an even coarser grid (37 x 37) that exhibits

the same basic features (i.e., separation and spiral).

The crossflow streamlines are shown in Fig. 3, along with the computed

bow and crossflow shocks. The streamlines show saddles in the wind and lee

symmetry planes on the cone surface. In addition, there is a saddle at the

separation point and a node at the center of the spiral. The separation point

and spiral can be seen more clearly in the blowup of Fig. 4. If the nodes and

saddles are summed using the procedure of Ref. 4, it can be shown that the

proper number of nodes and saddles exist in the streamline pattern of Fig. 3.

The separation point (Os = 149.60) corresponds to the plateau in pressure

(Fig. 3) just after the shock. If one considers the momentum equation in the

0 direction, it indicates that ap/be = Oat a crossflow stagnation point (u =

v = 0). The separation point in this flow field is a real crossflow

stagnation point (i.e., the crossflow passes continuously through zero). The

streamlines (Fig. 4) show that the flow moves in the negative 0 direction from

the lee stagnation point toward the separation point. In doing so, the flow

expands (i.e., there is a drop in pressure between a = 1801 and 0 = 1650).

The flow then recompresses to the separation point. This recompression

phenomenon is the cause of secondary separation. The inviscid separation

point location is far from that of the viscous flow. This can be surmised by

the fact that the shock is strong enough to separate a boundary layer at its

base. The inviscid separation point is too far downstream of the shock. The

A, streamlines of Fig. 4 clearly show how all the flow is ultimately swept up

into the infinitely turning spiral. The apparent power of the Euler equations

to describe the region near the center of the spiral should be noted. A

9
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detailed study of the streamline pattern near the center of the spiral

revealed that the streamlines asymptote to an ellipse. This was first

indicated by Smith (Ref. 5). It also should be pointed out that Fig. 4 shows

that streamlines wrapping around the spiral very rapidly approach the lee side

of the separation line (contact). Consider, for example, the third streamline

off the cone in Fig. 4. It wraps around the top of the spiral, comes back and

approaches the contact a short distance off the body, creating an entropy

layer on the lee side of the contact. This entropy layer tends to weaken the

contact.

Figure 4 also shows that the separation line leaves the cone at a finite

angle. J.H.B. Smith's analysis (Ref. 5) concluded that at a forced separation

the sheet comes off tangent. However, this difference is due to the fact that

the separation in the shock induced case is highly nonisentropic. As such the

flow can and does stagnate on both sides of the separating sheet. Figure 5

shows the crossflow velocity on the surface of the body (v = 0 from the body

boundary condition). The point to be considered here is that the velocity

passes through zero (separation) smoothly. The analysis of Smith indicates

that separation occurs at a discontinuity in crossflow, the jump in velocity

determining the sheet strength. This is a basic difference between forced and

shock induced separation and is discussed in detail in Ref. 12. The jump in

crossflow velocity in Fig. 5 is due to the shock. It is also interesting to
note the maximum negative u that occurs under the spiral. This negative

crossflow can become supersonic, causing a second reverse crossflow shock. A

sample of this will be shown later.

Figure 6 shows the isobars for the same case (M. = 2, 5 100, a =

250). It should be noted how smoothly the crossflow shock transitions to zero

strength in the field. The most interesting aspect of the figure is the

closed isobar at the center of the spiral. It represents an absolute minimum

in the flow field pressure. The component of vorticity in the spherical

radial direction is given by:

or - (u cos * + - sin * -. v)/(r sin )

bt.

where u and v are the crossflow velocities defined in Fig. 1 and r, 0, * are
spherical coordinates (Fig. I). Figure 7 shows lines of constant rOr. The

'., .'.-,
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figure shows how the vorticity is distributed and is produced by the crossflow

shock. Note that Qr is small until the crossflow shock, indicating that the

bow shock doesn't produce enough vorticity to cause separation on its own.

The vorticity produced by the bow shock is an order of magnitude smaller than

that produced by the crossflow shock and two orders of magnitude smaller than

that at the center of the spiral. For this reason, there are no contours of

vorticity outside the region behind the crossflow shock in Fig. 7. The

vorticity is negative, causing the counterclockwise spiraling of this flow,

and its absolute magnitude is maximum at the center of the vortex.
"3.

The existence of a crossflow shock does not necessarily imply enough

vorticity to cause separation. It is the variation in shock strength which

produces an entropy gradient and thus vorticity which causes separation behind

the shock. In the case of the circular cones considered thus far, the shock

strength decreases monotonically from its base. This is not always the case,

as will be discussed in the case of elliptic cross sections. For a circular

cross section the shock strength at the surface is a good indication of the

vorticity produced by the shock. Figure 8 is a plot of the inviscid r--'

separation point location vs the shock pressure ratio at the surface. The

cone has a 100 half angle, and the free stream Mach number is 2. The

crossflow shock strength was increased by increasing incidence. The pressure

ratio used is a good measure of the shock strength variation and thus the

vorticity produced by the shock. At each data point, the corresponding a is

noted. The plot shows that as the shock strength decreases, the separation
point moves to the lee symmetry plane. At the same time, the spiral region is

getting smaller. The highest incidence computed was 250, since above that

value the axial Mach number on the cone surface approaches sonic, making it . -

impossible to march. At the low end, a = 190, the spiral was so small that it

was difficult to resolve numerically, and no lower incidences are shown. The

interesting feature of this figure is that an extrapolation of the curve would

seem to indicate that inviscid separation moves to the lee plane before the

shock is eliminated (P2/Pl = 1.). An extrapolation would indicate that the

spiral is eliminated at P2/P1 - 1.85. This corresponds to a normal Mach

number slightly above 1.3, which is approximately the region where the full

potential approximation is valid for these flow fields. It would seem that

below a maximum normal Mach number of 1.3, the crossflow shock may not produce

enough vorticity to cause separation.

14
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Figures 9, 10 and 11 deal with an interesting case (M. = 3, 6 = 9.46 °, C

and a = 250). Figure 9 shows the streamlines and the crossflow shock near the

lee plane. The shock exhibits a kink as it passes from the influence of the

spiral. Near the cone, the shock must deflect the streamlines upward in order

that they may pass over the spiral; beyond the top of the spiral, this is no

longer true and the shock acts like a normal shock. The two regions are

separated by the kink in the shock, and the shock slope in the crossflow plane
had to be differenced away from this point. Another interesting feature of

this flow is the fact that the expansion of the reverse flow from the lee

stagnation point is so large that the negative crossflow becomes supersonic

near the body. The smooth recompression shown in Fig. 2 is replaced by a Ar

reverse crossflow shock. This phenomenon has been noted experimentally in

Ref. 19. The reverse crossflow shock, which was captured, can be seen in the

isobars of Fig. 10. The second (reverse) shock is on the lee side of the

primary crossflow shock. It is indicated by the clustering of the isobars

between An(p/p.) = -1.2 and tn(p/p.) = -0.73 on the cone surface. The shock

is not strong enough to produce a secondary inviscid separation, whereas in

the experiment of Ref. 19 it was strong enough to separate the boundary

layer. The strength of the vortex is also indicated in Fig. 10 by the closed

isobars representing a steep pressure minimum at the vortex center.

Figure 11 shows the surface pressure for the M. = 3, 6 = 9.46' and a =

250 case. The solid line is the present calculation with shock vorticity

induced separation at 0 = 155.30, again at the plateau in pressure just after

the primary crossflow shock. The reverse crossflow shock can be seen in the

pressure distribution at about 0 = 167 0 . The shock is captured, and so it is

smeared over a mesh interval. The figure also shows the numerical results of

Ref. 20. They are also a solution to Euler's equations but with the primary

crossflow shock captured. In the results of Ref. 20, the separation point was

forced to occur at 0 = 120' in order to match the boundary layer separation

point found experimentally. The forced separation model of Ref. 20 is in

contradiction to the analytical work of J.H.B. Smith (Ref. 5). In addition,

there are anomalies in the results of Ref. 20. Basically the comparison of

Fig. 11 shows that the two results are very close, while the separation points

are very different. It seems that forcing separation at 0 = 120 simply

inserted a wiggle in the surface pressure distribution of Ref. 20. The flow

then came back to the shock induced flow field. The crossflow shock locations

,,5
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are very close. The shock of Ref. 20 is smeared over a few points but is

close to the fit shock of the present calculations. If separation did occur

at 120', there must be a crossflow shock before B = 1200. However, there is

no evidence of a shock before separation in the results of Ref. 20.

Figure 12 shows the pressure distribution on a 5' cone at M. = 4.25 and a

= 12.350. Compared are the results of the present calculation, those computed 7:

using the full potential equation supplied by M. Siclari 21, and the

experimental results of Rainbird 2 2. The potential results of Siclari have

been corrected for nonisentropic bow shock effects while maintaining the

irrotational assumption. Figure 12 indicates that the Euler and potential

results are virtually identical until the shock. The potential result does

not exhibit the minimum in pressure behind the shock typical of separation.

Potential calculations cannot predict separation or spiraling without a

shedding sheet. The comparison between the Euler and potential calculations

affirms the fact that rotationality is important only after the crossflow

shock. A comparison between the present calculation and the experimental

results of Rainbird clearly shows that the vorticity produced by the shock

does not separate the flow near the viscous separation point. The experimen-

tal data show two separations, primary at 0 = 120.30 and secondary at 1600, 4

while the inviscid separation is at 0 = 151.30. The longer plateau in

pressure in the experiment behind the primary separation point is due to the

secondary separation; otherwise, the Euler and experimental pressure distribu-

tions would be similar. It is the expansion and recompression of the reverse -.-

flow that causes secondary separation. It should be clear that while the

vorticity produced by the crossflow shock is not the whole separation story,

it may play an important role in the process. There are two sources of

vorticity in this flow field: one is the shock and the other the boundary

layer. Both these sources of vorticity play a role in separation and the

resulting spiral or vortex. Boundary layer shed vorticity will be discussed

later in this paper.

The eccentricity of the elliptic cross sections has a significant impact

on the vorticity generated by the crossflow shock. In general, the thinner

the cross section (higher axis ratio) the stronger the shock. There is an

effect, discovered by the author 13, which seems to reduce the entropy gradient

near the surface behind the shock as the section of elliptic delta wings gets

18
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thinner. Consider the isobar plots of Fig. 13 and 14; both show the leading

edge of the wing, crossflow shock and isobars in the leading edge region.
Figure 13 shows a 10:1 section and Fig. 14 a 6:1 section. The other

parameters of the flow were chosen so that the shock was approximately the
same strength at the surface. The two angles noted in the figure define the

wing geometry, X is the sweep angle of the delta, and 6 is the slope of the -

surface in the symmetry plane. In the thinner case (Fig. 13), there is a gap

between the surface and the last wave of the expansion from the wing leading

edge. This is indicated by the tendency of the isobars to become more
vertical near the shock. The effect is similar to the uniform flow region

downstream of a Prandtl-Meyer expansion below the last wave of the

expansion. The result of this phenomenon is a region of uniform crossflow

Mach number in front of the shock near the surface. This region is indicated

in Fig. 13 by the portion of the shock near the surface before it begins to

curve. An inspection of Fig. 14 shows that this effect is not present because

the leading edge radius of curvature is too large in this case.

The result of this phenomenon is shown in Fig. 15, which is a plot of the

entropy distribution along the shock on its high pressure side. Note the much

smaller entropy gradient in the 10:1 case as compared with the 6:1 case. Also 4
included in the figure is the entropy distribution along the crossflow shock

for the 100 cone, M. = 2, and a = 250 discussed previously. Although the

shock is much stronger for the case of the cone, this durve is included for

reference. Note that the entropy drops rapidly at the surface in the case of

the cone. The vorticity just behind the shock at the surface is much larger

in the 6:1 case than in the 10:1 case. The result is that the 6:1 case

separates and the 10:1 does not. Figure 16 shows the crossflow Mach number

distribution on the surface for the three cases. First note that the 6:1 and

10:1 cases have the same shock strengths as were indicated by their surface
entropies at the shock (Fig. 15). The separation in the 6:1 case is indicated

by the negative Mach number starting at ? 1600 (b is the polar angle in the

mapped space). While it is true that increasing the eccentricity of the

section tends to decrease the entropy gradient behind the shock, this does not

always eliminate separation. The vorticity just behind the shock at the wall

may be reduced, but it can become large downstream and cause separation. In

addition, once a spiral forms, the shock has a tendency to move toward the

20
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leading edge where the extent of the uniform flow region just discussed is

reduced. The problem is complicated by a number of factors.

The next case considered is a very thin delta wing. The ellipse axis

ratio is 14:1 (6 = 1.5, X = 70'); the freestream conditions are M. = 2 and a ='if

100. The crossflow shock is somewhat stronger in this case than the ellipse

discussed in the last paragraph. The shock crossflow Mach number at the

IM, surface is 1.9 in this case and was about 1.8 in both the 6:1 and 10:1 cases

discussed previously. This is due to the higher eccentricity. The

eccentricity of this section combined with a shock position relatively far

from the leading edge results in a significant region of uniform flow near the

base of the shock. This is indicated by the isobar plot of Fig. 17. The

result is a very small derivative of entropy normal to the surface just behind

the shock. The flow in this case does separate although the effect is mild.

It seems that the eccentricity of the section has reduced the vorticity

resulting in a weak vortex. Figure 18 shows the surface pressure distribution

for this case compared with the computed results of R. Newsome.11  The effect

of the vortex is seen as a slight drop in the upper surface pressure, the

local minimum is at about X/XLE = 0.3. The influence of the separation is

negligible in this case, as demonstrated in the next paragraph. The

comparison is very good, although the influence of the vortex in the result of

Ref. 11 seems a little greater. In the work of Newsome, the shock was

captured and is spread over four mesh intervals. This is good in light of the

p fact that no post or preshock overshoots are present. It seems that these are

controlled with artificial damping (see Ref. 11 for details). No such damping

was necessary in the present calculation because the shock is fit. It is
interesting that the artificial damping can he controlled so that the shock

vorticity induced separation is not distorted significantly.

In an effort to study a substantial shock vorticity induced vortex on a

delta wing, a flow situation was developed in which the crossflow shock

strength at the surface was large. It was shown by Siclari 23 that for

potential flows, the shock strength is increased as the wing leading edge

... sweep is increased. A 10:1 ellipse whose leading edge was swept 720 (i.e., X "

= 720 and 6 = 1.860) was considered. The freestream conditions were the same

as those considered previously (M. = 2, a z 100). The surface shock Mach SA

number was 2.3 in this case while it was only 1.8 for the 10:1 ellipse

23
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considered previously. The flow did separate in this case, and the vortex was

substantial (maximum reverse Mach number of -0.78). The crossflow streamlines

are shown in Fig. 19. The dashed line that intersects the body near the

leading edge (the stagnation point is a saddle) is the streamline which wets

the surface. The entropy on this crossflow streamline wets the surface from

the saddle to the wind plane node, and over the leading edge through the shock

and separates onto the spiralling contact sheet. The dashed line that

attaches to the surface near the lee plane carries the entropy which wets the
surface from its saddle to the lee plane node and back in the reverse flow V.

region to the low entropy side of separating contact. Figure 20 shows the

region near the leading edge in more detail. The figure shows the crossflow

shock whose shape is affected by the vortex. The dashed line near the vortex

is the separating streamline, i.e., the contact sheet.

Figure 21 shows the isobar pattern (for the case discussed in the last

I1r paragraph) near the leading edge. Note that the separation has moved the

shock toward the leading edge so that the region of uniform flow near the base

of the shock does not exist in this case. The entropy gradient behind the

shock is quite large so that the vorticity generated by the shock is

significant. The closed isobar downstream of the shock represents a minimum

in pressure which corresponds to the center of the vortex. The effect of the

separation on all aspects of the flow field is significant. In particular,

the surface pressure is affected significantly. Figure 22 compares the

computed surface pressure with that calculated using the full potential

equation. Again the two calculations give the same result up to the location

of the shock. The shock position is moved from X/XLE - 0.73 (potential) to

r,>. X/XLE 0.83 (Euler) by the separation. In addition, all the typical

separated flow features behind the shock do not exist in the potential

result. The maximum in pressure just behind the shock represents the

" separation or stagnation point and the minimum in pressure at X/XLE - 0.6

represents the maximum in reverse flow velocity just under the vortex.

The results shown thus far have indicated that shock vorticity can cause

separation which is at least qualitatively similar to boundary layer
" separation. In addition, the computations have shown that shock vorticity can

have a significant impact on the flow field. The rest of this paper will deal

with the impact of vorticity shed from a separating boundary layer.

'. .°- . . . .
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4. SHED VORTICITY - COMPUTATIONAL MODEL

In this section, the concept of shedding vorticity from a specified

separation point (the intersection of a conical separation line and the cross

plane) will be discussed. The conceptual process of shedding vorticity from a

conical surface will force separation and an accompanying spiral. The model

used here to force separation at a specified location follows the work of

J.H.B. Smith 5 . Smith assumed irrotational flow outside a vortex sheet in

order to analyze the local flow at separation. The present work uses only the

basic concept, which doesn't depend on the irrotational assumption. In

addition, any model of inviscid separation should reduce to that of Smith as

the rotationality outside the vortex sheet gets small. The basic concept

acquired from Ref. 5 is that at a specified separation point, there is a

L- vortex sheet or contact surface which has a jump in velocity direction. The '4
condition at the intersection of the sheet and the surface (i.e., the

separation point) is that the crossflow velocity stagnates on the lee side of

the sheet (Fig. 23a). The crossflow velocity on the wind side of the sheet is

determined by the global solution. In general, the crossflow velocity on the

wind side of the sheet is finite. The vortex sheet is a stream surface and

the pressure is continuous across it. In the case of isentropic irrotational

flow considered in Ref. 5, these conditions imply that the modulus of velocity

is continuous across the sheet. If the crossflow stagnates on both sides of

the sheet (u = v = 0) at separation, the isentropic condition implies that the

radial component of velocity (w, Fig. 1) is continuous and the sheet doesn't

exist (i.e., no vorticity is shed into the flow field). These arguments

conclude that in isentropic flow, the separating sheet must leave thecone

surface tangentially if the wing side crossflow is subsonic. If the surface

crossflow is subsonic just upstream of separation and the sheet leaves the

surface at any angle relative to the surface, then the flow on the windside of

the sheet must stagnate and no vorticity will be shed into the flow. On the ''"

other hand, if the crossflow is supersonic the sheet can leave the surface at

an angle, an oblique crossflow shock will occur, and the flow on the wind side

of sheet will not stagnate so that vorticity is shed. This phenomenon will be

discussed further in the next section. None of these arguments hold for the

highly nonisentropic flow discussed in the previous section, where the flow

' . -..29
' • -2 0 ° . , ' ° °



stagnates on both sides of the separating sheet. In these cases vorticity is "

not shed from the surface, only shock vorticity is present.

Separation was forced in the calculations presented here simply by using "

a double point at separation in order to allow for a jump in crossflow ...

velocity. The crossflow velocity (u) on the wind side of the sheet is 1.

determined by the governing crossflow momentum equation, as at any other

surface point. The crossflow component v must vanish at every surface point

from the boundary condition. The crossflow velocity on the lee side of the

sheet is set to zero (u = 0) in order to force separation at a specified

point.

The separation point in this forced separation model exhibits a jump in - "
crossflow velocity. The crossflow on the wind side (Fig. 23a) of the "

separation is evaluated in each step of the iteration from the momentum

equation tangent to the body in the cross plane. The remaining primitive -

variables are computed at this point with the same governing equations as at

any other body point, with the boundary condition (v = 0) satisfied. All

circumferential velocity derivatives are taken one-sided in the negative 0

direction in order to avoid differencing across the sheet. The point just

below the sheet (lee side) is forced to be a crossflow stagnation point (u = v

0). The pressure is continuous across the sheet so that its value on the

wind side could theoretically be used on the lee side at separation. Diffi-

culties were encountered in computing the pressure in a small region just

after separation. The computation of the pressure in this region will be

discussed in the next paragraph. The entropy at the lee side point is

computed in the standard way (i.e., conserved along the streamline that wets

the lee side of the body). If the pressure is known in addition to the

entropy and total temperature (the flow is assumed adiabatic), the last

component of velocity w (Fig. 1) can be evaluated from the energy equation.
Again circumferential derivatives of the velocities across the sheet at the

body grid points near separation are avoided. Differences in entropy across ".'

the sheet are avoided naturally by the X-scheme as in the shock induced

separation discussed in the previous section.

The difficulty encountered in the evaluation of the pressure on the lee

side of the separation point can be traced to the numerical computation of the

derivatives of velocities in a direction normal to the surface. The

30.-
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derivatives appear in the continuity equation from which the pressure is -

evaluated. These velocities are discontinuous across the sheet, and since the

sheet lies so close to the surface at separation, there is no way to resolve

the flow in the region between the surface and the sheet near separation. The

behavior of the pressure in this region was evaluated analytically by Smith 5

and numerically by Fiddes 6 under the assumption of slender body theory. The

results of Fiddes show a pressure plateau on the surface just after

. separation. The full Euler equations predict that the pressure derivative

. along the surface (pq) becomes zero at the lee side of the separation point,

where the crossflow stagnates. In the present calculation it has been

difficult to obtain this type of pressure behavior. A number of procedures

have been attempted with varying degrees of success, hut none has been totally

satisfactory. In Ref. 7 the author showed preliminary results which exhibited

a pressure plateau after separation, but the scheme used there proved unstable

when the vortex sheet was moved during the iteration process. A reformulation

of dependent variables has alleviated the problem. Currently, as long as the

crossflow is subsonic (Fig. 23a) just before separation, no special treatment

is used in evaluating the pressure except for circumferential and radial grid

clusterings. Because of the difficulties associated with the pressure

evaluation in the region on the surface just after separation the results of . -'

the next section should be considered somewhat preliminary.

In the case of supersonic crossflow (Fig. 23b) differencing of pressure

across the separation point proved to be unstable. The results of a number of

numerical experiments indicate that the model for the inviscid flow in this

case should be such that the sheet leaves the surface at an angle relative to

it, and an associated shock occurs at separation. The flow structure is

sketched in Fig. 23b. This model does not violate the concepts of vorticity

shedding proposed by Smith 5 since the flow on the wind side of the separation

point need not stagnate and thus a jump in velocity does exist across the

sheet. In order to capture the shock at separation in one mesh interval no

pressure derivatives were taken across the separation point on the cone

surface. In addition a small pressure plateau is imposed just after

separation, the level being taken from just downstream of separation.

It should be pointed out that the discussion presented in this section

thus far has assumed a circular cross section. The velocity u is tangent to

the body and v is normal. For an elliptic cone the procedure is the same with
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u and v being replaced in the discussion by conical velocities tangent and

normal to the body. ,

Secondary separation is forced by shedding vorticity from the body in the

reverse crossflow region produced by primary separation. The model is the

same as was just outlined for primary separation. Both separation point

locations are obtained from experimental data. The only free parameters in

the problem as posed here are the locations of the separation points. In the

work of Ref. 6 primary separation points were found iteratively by matching an

inviscid solution (slender body theory) to a boundary layer solution. A full

viscid/inviscid interaction procedure using the current Euler calculation will ,

be the subject of future work.
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5. COMPUTATIONAL RESULTS - SHED VORTICITY " '."
-4-.W

The procedure for shedding vorticity in an inviscid flow was tested by

comparisons with the experimental data of Rainbird22 . A 50 half angle cone

was tested at M. = 1.79 (Re = 34 x 106) and M = 4.25 (Re = 68 x 106). The V
detailed surface pressure distributions presented in Ref. 22 were digitized

for comparison. Both primary and secondary separation point locations were

determined from surface shear stresses in the measurements and used in the

Euler computations. In addition, pitot pressure surveys were taken in the

vicinity of separation, which were used to compare the experimental and

computed vortex core locations. All the computations which follow were

performed on an 89 x 89 cross sectional grid with residuals reduced at least

five orders of magnitude.

The first case considered is the 50 cone at M. = 1.79 and a = 12.65'.

The crossflow is subsonic in this case and primary separation occured at 0 =

1320. Figure 24 shows the computed crossflow streamline pattern in the

vicinity of separation. The vortex is clearly shown above the cone surface in

Fig. 24. The dashed line leaving the surface tangentially is the vortex

sheet. The dashed line off the surface is the crossflow streamline which

stagnates at a saddle in the lee plane and partitions the flow which goes into

a node in the lee plane (not shown in Fig. 24) from that which goes into the

spiral node at the center of the vortex. The vortex center location compares

reasonably well with that found experimentally. The experiment shows the

location at 0 = 1650 and h = 0.2 (h is the radial distance from the surface

-. normalized by the cone radius) and the computation predicts the vortex

location at 0 = 1620 and h = 0.18. All the streamlines are well behaved

including the separating streamline and those which spiral into the vortex. .,

The power of the Euler equations to capture the flow features once vorticity %
is shed from the surface is clear from Fig. 24. Potential methods, linearized

or fully nonlinear, require the inclusion of discrete vortices to model the

sheet. This requirement usually precludes a description of the entire sheet,

only a portion of the sheet is computed with the remainder being lumped into a mv.

single vortex. The only special treatment in the present work is that of

shedding vorticity from one point on the surface as described in the last

section.
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Figure 25 shows the streamlines for the same case with both primary and

secondary separation included. Secondary separation was imposed at a = 1560

(from the data of Ref. 22) and is indicated by the lifting off of the surface

streamline in the reverse flow region. The secondary vortex was too small to

resolve with the grid used. Figure 26 shows the surface crossflow velocity .-.-

distribution for this case, the reversals in velocity at the two separation

points can be seen clearly. The inclusion of secondary separation affects the

flow behavior substantially, in particular the location of the primary vortex

and the surface pressure distribution. Unfortunately, it moves the vortex

center to 0 = 1650 and h = 0.14. With secondary separation included the

computed radial location of the vortex center is further from the experimental

data than with primary separation alone. It is obvious from the pitot

pressure survey of Ref. 22 that secondary separation occurs in a region which

has stronger viscous effects than primary separation. It may be that the

prediction of flows with secondary separation with a purely inviscid model is

impossible. The possibility that the computational difficulties in computing

the flow in the region just after separation is affecting these results also -

exists.

The surface crossflow velocity distribution shown in Fig. 26 should be

compared with that of Fig. 5 which only included shock vorticity. Figure 26

shows a discontinuity at primary separation from u - .6 to u = 0 and at

secondary separation from u - -.5 to u = 0. Of course, it is these jumps in

velocity which determine the vorticity which is shed from the separation

points. In Fig. 5 the velocity passes through zero smoothly so that no

vorticity is shed from the surface and only shock vorticity exists.

Figure 27 shows the surface pressure distribution computed assuming no

separation, only primary separation and both primary and secondary separation

also included are the experimental results. Primary separation occurs in the

middle of the adverse pressure gradient of the attached flow (0 = 1320).

Primary separation forces the flow to compress more rapidly upstream of

separation which is consistent with the findings of Ref. 6 and the

experimental data. In addition a reverse flow region is developed behind the

separation point. This reverse flow expands from the lee plane to a local

pressure minimum just under the vortex (0 - 1620) and recompresses to ...

somewhat of a plateau (beginning at 0 - 1500) . This region exhibits .
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pressure variation because of the difficulties already mentioned. It is the

recompression between 0 = 1620 and 0 = 150 which causes secondary

separation. With secondary separation included the expansion/recompression ofthe reverse flow is reduced and the computed results in this region approach

the experimental data. The pressure plateau between primary separation (0 =

1320) and 0 = 1500 becomes flatter and its level is very close to the

experimental data. The inclusion of secondary separation moves the pressure

distribution before primary separation away from the experimental data. This

is due to the flattening of the vortex sheet discussed previously. Some of

the differences between the experimental data and the computed results are

surely due to viscous effects (i.e., boundary layer thickening before

separation). This is true for both primary and secondary separation. It

should be pointed out that the experimental separation is not at the beginning

of the plateau in the experimental pressure. This is not typical of purely

inviscid separation indicating a significant boundary layer thickening in this

case. ..

The next case considered was at a lower angle of attack 10.60 (50 cone at

M. = 1.79). The surface pressures are shown in Fig. 28. The separations are

at 0 = 139' and 157*. The behavior is similar to that shown in Fig. 27. In

this case the inclusion of secondary separation brings the surface pressure

compression upstream of separation back to essentially the attached results.

The reason for this becomes obvious after a comparison of crossflow

streamlines with and without secondary separation (Fig. 29 & 30). The
pressure plateau in this case is very flat. A large discrepancy between

calculation and experimental data in the reverse flow region is eliminated

with the inclusion of secondary separation. While the inclusion of secondary

separation does bring the calculated results closer to the experimental data

in the reserve crossflow region, it seems obvious that viscous effects are

important there; the experimental data show this. In the subsonic crossflow

cases considered thus far, any viscous effects which modify the vortex core

location can effect the global solution. The discrepancies between calculated

results and experimental data before primary separation are totally eliminated

when supersonic crossflow is considered.

The last case to be considered involves supercritical crossflow.

It Is the high speed (M. = 4.25) flow over the same 50 cone at a = 12.35*. Q"
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The streamlines for this case are very interesting. Figure 31 shows the

streamlines with primary separation forced at 0 = 120' and no secondary

separation forced. The vortex very close to the body is a result of a shock
,

induced separation at 0 -1510. With only primary separation specified

(i.e., shedding vorticity) the reverse crossflow becomes supersonic causing a

reverse crossflow shock. This shock can be seen from the isobars of Fig. 32

(0 - 1540). It is the vorticity generated by this shock which causes the _

secondary separation in Fig. 31. An oblique crossflow shock is apparent from

the isobars of Fig. 32 at the primary separation point. This is due to the

fact that the sheet comes off at an angle relative to the body as discussed

previously. The dashed line off the surface at 0 = 90' (Fig. 31) wraps around

the vortex and stagnates at a saddle on the surface. This streamline

partitions the flow which goes into the main vortex node from that which

spirals into the secondary vortex node.

Figure 33 shows the streamlines for this case with both primary and

secondary (0 = 1600) separations specified. The figure shows a third vortex

near the primary vortex sheet. The streamlines passing over the secondary
vortex pinch together to form a saddle just above the secondary vortex. The

existence of this saddle implies the formation of an additional node which is

the spiral node close to the vortex sheet just after separation. The shock

system in this case is quite complex and can be deduced from the isobars of -"

Fig. 34. An oblique crossflow shock can be seen leaving the surface at the

primary separation point, this shock becomes normal to the flow off the

body. Visualization of this flow is aided by a look at the crossflow sonic

lines (Fig. 35). The sonic line leaving the surface at the separation point

coincides with the vortex sheet. The normal portion of the oblique shock

formed at the primary separation points can to seem as the supersonic to

subsonic transition off the body just after separation (0 - 1320). There is

another transition further downstream E) - 1460) , a corresponding shock can he

seen in the isobars of Fig. 34. It seems that the flow then re-expands to

supercritical, and this region is terminated by yet another shock

S(0 - 1650). As usual the reverse flow expands as it moves from the lee

. plane. The reverse crossflow becomes supprcritical just heneath tn- primary

vortex (0 -16!0) . There is then the possibility of an oblique crossflow

shock at the secondary separation point. However, the reverse crossflow Mach

number is too low to make the deflection required by secondarv separation. A
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Fig. 32 Isobars, Forced Primary Separation, Shock
Induced Secondary Separation
(M.,, 4.25, 6 -50,o 12.35)

Fig. 33 Crossflow Streamlines, Forced Primary and
Secondary Separations (M., 4.25,
6 50S, ~-12.35*)
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detached normal shock can be seen before the secondary separation point in

both the isobars (Fig. 34) and the sonic line (Fig. 35).

The comparison with the experimental data in this case is much better

than those of the two subsonic cases studied previously. The primary vortex

core location is computed to be 0 = 1640 and h = 0.22 which compares very well ' .

with Rainbird's data 0 = 165O and h = 0.23. More importantly the surface

pressure distributions (Fig. 36) compare very well. Figure 36 shows no

upstream influence before the primary separation point, a comparison with the h
attached flow (no forced separation) of Fig. 12 shows no change before 0 =

1200. Of course, this is not surprising for the inviscid calculation since

the crossflow is supersonic. The surprising result is that the experimental

data shows no influence of boundary layer thickening. The pressure rise due

to the shock at primary separation compares very well with data, note how

sharply the experimental pressure raises. In the region of secondary

separation the comparison is somewhat poor. It is becoming quite clear that

the flow in this region is influenced significantly by viscous effects. The

inclusion of secondary separation moves the compression from 0 - 1520 to 8 =

160' but the supersonic reverse crossflow is not eliminated. It should be

pointed out that the expansion/recompression just after the secondary

separation (0 1500) is consistent with the magnitude of the secondary

vortex.

The procedures used to shed vorticity from the surface of a circular cone

were applied to the flow about an elliptic delta wing tested by Squire 24 . The

grid used had 89 x 89 points in cross section and the residual was reduced

five orders of magnitude. While Squire didn't determine precisely the primary

separation point location, his experimental data indicated leading edge ."

separation for the ellipse (a/b - 14/1) at M. = 2 and a = 100. The computed

attached flow surface pressure is shown in Fig. 18. There is a small vortex

(X/XLE .3) due solely to shock vorticity in the result of Fig. 18. Figure

18 shows a rapid expansion around the wing leading edge followed by a weak %' ,

recompression before the shock. In the present study it was found that no

solution could he obtained with vorticity being shed in the region of

favorable pressure ]radient near the wing leading edge. Once the weak

recompression was reached, separation could he forced to occur. Figure 37

shows the computed surface pressure distribution on the elliptic delta wing
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with separation forced at X/XlE = .9. (This is as close to the leading edge

as possible that separation could be forced.) Figure 37 shows that the flow

expands around the leading edge before the specified separation point. In

fact this separation is of the supercritical type discussed previously. An

oblique shock causes the recompression just after the leading edge

* compression. Figure 37 also shows the experimental data of Squire 24. The

comparison is good except for the pressure plateau between X/XLE ..6 and .9,

-. where secondary separation was detached experimentally. Figures 38 and 39

show the cross-sectional stream-lines and isobars, respectively. A comparison

of Fig. 37 and 38 shows that the apparent pressure raise at X/XLE = .55 is in

the reverse crossflow region, so that it is in reality an expansion on the

wing surface. A comparison of Fig. 38 and 39 shows a crossflow shock located

above the reverse flow region at X/XLE .6 . It is this shock's interaction

with the reverse crossflow that causes the expansion at X/XLE .55. The

experimental results indicate secondary separation at X/XLE = .8. Figure 40

shows the computed surface pressure distribution with both primary and

secondary separation specified (secondary separation is specified at the

experimental location). The inclusion of secondary separation brings the

pressure level just after primary separation (X/XLE .9 to X/XLE = 1.) to the

experimental value. The reverse cross is supersonic after the expansion at

X/XLE = .55, so that the inclusion of secondary separation cannot affect the

pressure level between X/XLE = .6 and .8 and so there is a significant

difference between the computed and experimental pressure level in this
P. region. There is shocking of the reverse crossflow at the secondary

separation point X/XLE = .8 followed by a local minimum in pressure

(X/XLE .85) under the core of the secondary vortex. The streamline patter

is shown in Fig. 41.

- The results of the investigation of the delta wing flow field are the

same as those for the circular cone. In particular, it was found that

. secondary separation is dominated by viscous effects, and an inviscid model

(as the one used here) will have difficulties predicting details of the flow

in this region. The region of the flow between X/XLE = .55 and .8 in Fig. 39

is similar to the reverse crossflow region e - 1700 to 140 in Fig. 37

(supercritical cone). In the case of the ellipse this region is longer

because the vortex is elongated.
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6. COMPARISON OF SHOCK VORTICITY & SHED VORTICITY

In an effort to gain a better understanding of the relationship between

shock vorticity and vorticity shed from the surface of a smooth body, the flow

about the 50 cone tested by Rainbird 22 was computed with a number of different

separation point locations specified. The case considered was M. = 4.25 and a 71
I..'-.#

12.350. As indicated previously, this flow is supercritical and, with no

vorticity shed from the cone surface, the crossflow shock produces enough

vorticity to cause separation. Figures 42 and 43 show the crossflow

streamlines and isobars, respectively, for this flow with no vorticity shed .7

from the body. Separation for this case is computed to be at 0 = 151.30.

Figure 42 indicates that the separating streamlines leave the surface at a

large angle (570) relative to it. As shown earlier in this paper (Fig. 5),

when only shock vorticity is present there is no jump in crossflow velocity at

the separation point, which is consistent with the fact that no vorticity is

being shed from the surface. It should be pointed out that in the

computational results that follow, all crossflow shocks are captured. Figure

43 indicates that the shock is captured very sharply (see the closely spaced

isobars). Additionally, these captured shock results compare very well with

the shock fit results for this case (Fig. 12).

Figures 44 and 45 show results for the other extremes of separation point

location studied (6 = 115'). Figure 44 shows the crossflow streamlines. The

secondary separation shown is due to a strong reverse crossflow shock (see

Fig. 45), and the third vortex off the surface is similar to the one discussed

previously. In Fig. 45, the isobars are shown, and they indicate an oblique

shock at the specified primary separation point. The jump in velocity at the

separation point is significant with separation specified at 0 = 115',

indicating significant vorticity being shed from the surface. A comparison of

, Fig. 42 and 44 shows that the extent of the vortical regions are comparable,

while the two sources of vorticity are very different.

The relationship between shock vorticity and shed vorticity is made

. clearer by considering Fig. 46. The figure shows the jump in crossflow

velocity vs separation point location. The jump in crossflow velocity is

directly related to the vorticity shed into the flow field from the separation

point. The shock configuration transition from an oblique crossflow shock to
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Fic. 42 Crossflow Streamlines on the 50 CircularJ
Cone (M. 4.25, a - 12.350) Separation Due

* to Shock Vorticity Alone at a 151.*

Fig. 43 Isobars on the 50 Circular Cone (M. 4.25,
V. a -12.350) Separation due to Shock Vorticity

Alone at e 151 *

4, 52



07-77 WT-.*--

Fig.44 rosslowStremlies n th 5*CirclarCon

Fig. 4 Crsobareans on the 50 Circular Cone 4.5
(Me 42,35135) Separation Forced615

at 6- 115



1.5

1.4-

1.3--- -

1.2

1.01

CF 0.8

V7'P 0.7 - .

0.6-

0.5

0.4-

0.3-

0.2

0.1

0
110 120. 130 140 150 160

OS, DEG

*Fig. 46 Vorticity Shed into the Flow Field as a
Function of Separation Point Location

00

54



-. a detached normal crossflow shock occurs at about es .128' (indicated by the

shaded area in Fig. 46). It should be pointed out that the jump in velocity

at the separation point in the oblique shock cases was computed by subtracting

the oblique shock velocity jump from the numerical results. Thus, the jumps

in velocity in Fig. 46 represent the jumps across the vortex sheet at ..

separation. The figure shows that this velocity jump goes to zero smoothly as

the separation point location due to shock vorticity alone is approached (e, =

151.30). This indicates that separation due to shock vorticity alone and that

due to shed vorticity are related. In fact, it would seem that separation due

to shock vorticity alone is a particular solution of the set of solutions in

which vorticity is shed from the surface. In this particular solution the JB

value of the vorticity shed is zero.
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6. CONCLUSIONS

The research effort in this area is ongoing, and while some of the

results presented here should be considered preliminary, a number of

conclusions have been reached:

o The vorticity produced by the shock system in supersonic conical flow

can cause separation on its own and may add significantly to the

vorticity shed from a separating boundary layer

o As the shock system becomes weak and approaches a potential (i.e.,

irrotational) shock, its vorticity no longer causes separation (Fig.

8) -

o The reverse crossflow can become supersonic beneath a vortex core and

r-" a reverse crossflow shock may form (Fig. 10 & 11). This shock can

cause secondary separation on its own (Fig. 31)

o Increasing eccentricity on elliptic cross sections has a tendency to

reduce shock entropy gradients and thus vorticity. Yet, the

separation caused by shock vorticity can have a significant impact on p

the flow field (Fig. 22)

o The artificial damping required to stabilize captured shocks does not

necessarily significantly distort shock vorticity (Fig. 18)

o Both primary and secondary separation can he forced at specified

locations by shedding vorticity from a smooth surface. With the

vorticity shedding model of Smith 5 , the basic features of the

separated flow can be reproduced

o Euler calculations including vorticity shedding are more accurate and '.

in some sense simpler than those using irrotational flow models
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0 There are computational difficulties in a small region after
separation that may significantly affect the global results

0 In the case of supercritical crossflow, the vortex sheet leaves the
surface at an angle relative to it causing an oblique crossflow shock

(Fig. 31 to 35)

0 The viscous effects (boundary layer thickening) upstream of

separation are much more significant in the case of subsonic .

crossflow than in the case of supercritical crossflow (Fig. 27 & 36)

4....

o Secondary separation is influenced more by viscous effects than

primary separation

o The vorticity shed into the flow field is reduced smoothly as the

separation point is moved to its shock induced location (Fig. 46).
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